Introducing Elitist Black-Box Models: When Does Elitist Behavior Weaken the Performance of Evolutionary Algorithms?

نویسندگان

  • Carola Doerr
  • Johannes Lengler
چکیده

Black-box complexity theory provides lower bounds for the runtime of black-box optimizers like evolutionary algorithms and other search heuristics and serves as an inspiration for the design of new genetic algorithms. Several black-box models covering different classes of algorithms exist, each highlighting a different aspect of the algorithms under considerations. In this work we add to the existing black-box notions a new elitist black-box model, in which algorithms are required to base all decisions solely on (the relative performance of) a fixed number of the best search points sampled so far. Our elitist model thus combines features of the ranking-based and the memory-restricted black-box models with an enforced usage of truncation selection. We provide several examples for which the elitist black-box complexity is exponentially larger than that of the respective complexities in all previous black-box models, thus showing that the elitist black-box complexity can be much closer to the runtime of typical evolutionary algorithms. We also introduce the concept of p-Monte Carlo black-box complexity, which measures the time it takes to optimize a problem with failure probability at most p. Even for small  p, the p-Monte Carlo black-box complexity of a function class [Formula: see text] can be smaller by an exponential factor than its typically regarded Las Vegas complexity (which measures the expected time it takes to optimize [Formula: see text]).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EMCSO: An Elitist Multi-Objective Cat Swarm Optimization

This paper introduces a novel multi-objective evolutionary algorithm based on cat swarm optimizationalgorithm (EMCSO) and its application to solve a multi-objective knapsack problem. The multi-objective optimizers try to find the closest solutions to true Pareto front (POF) where it will be achieved by finding the less-crowded non-dominated solutions. The proposed method applies cat swarm optim...

متن کامل

Design of Virtual Topologies using the Elitist Team of Multiobjective Evolutionary Algorithms

Designing virtual topologies is necessary to obtain maximum performance of optical networks. In this paper the routing and wavelength assignation (RWA) is computed using an elitist team of multiobjective evolutionary algorithms, which proposes converting the original RWA problem into a problem of traditional routing, thereby modifying the graph that represents the optical network. The Elitist T...

متن کامل

Convergence of Non-Elitist Strategies

| This paper oers suucient conditions to prove global convergence of non{elitist evolutionary algorithms. If these conditions can be applied they yield bounds of the convergence rate as a by{product. This is demonstrated by an example that can be calculated exactly. KeyWords| global convergence, non{elitist evolutionary algorithm , martingale theory

متن کامل

Convergence of Non{elitist Strategies G Unter Rudolph

| This paper ooers suucient conditions to prove global convergence of non{elitist evolutionary algorithms. If these conditions can be applied they yield bounds of the convergence rate as a by{product. This is demonstrated by an example that can be calculated exactly. KeyWords| global convergence, non{elitist evolutionary algorithm , martingale theory

متن کامل

Preliminary Study on the Performance of Multiobjective Evolutionary Algorithms with MNK-Landscapes

Epistasis and NK-Landscapes in the context of multiobjective evolutionary algorithms are almost unexplored subjects. Here we present an extension of Kauffman’s NK-Landscapes to multiobjective MNK-Landscapes in order to use them as a benchmark tool and as a mean to understand better the working principles of multiobjective evolutionary algorithms (MOEAs). In this work we present an elitist multi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Evolutionary computation

دوره 25 4  شماره 

صفحات  -

تاریخ انتشار 2017